

Annual Program Review Meeting

Briggs White | May 10, 2021

In competition with decarbonization

US installed capacity (GW)
EIA AEO 2020 base case

Adding CCS can increase water consumption by 50%

+ a Global Trend Through 2050:

30% total water withdrawals

85% energy water usage

<u>Highly regional in its challenges</u>

- More effective water management needed to keep operating costs low as thermoelectric power grows
- Dry cooling technologies available for water-stressed regions

A platform for change

Develop diverse solution

Meet disparate stakeholder needs

- Reduce freshwater use by advanced energy systems
- Minimize impacts of plant operations on water quality

- Develop, scale, and deploy technologies
- Inform decision-makers
- Prioritize R&D for maximum impact
- Engage regional stakeholders

Increase Flexibility and Decarbonize

SOLUTIONS

Water treatment		Cooling tower		Condensers		Systems analysis	
Effluent	Recycle	Dry cooling	Novel	Steam-side	Water-side	Policy	Technology
Plume abatement						Sc	enario
Charact.	Modeling			Physical	Chemical		
Physical	Chemical						

Biological

Sensors

Address broad challenges

- A External sources
- B Internal sources
- C Plume abatement
- Condenser modifications
- Enhanced cooling towers
- F Wastewater treatment
- G Systems Analysis

Respond to regulations and the market

Regulatory Drivers on Quantity & Quality

Clean Water Act 816(b)

Effluent Limitation Guidelines

Performance Drivers

Waterside fouling and scaling+ Steam-side corrosion+ Steam-side air in-leakage

Higher fuel costs, Expensive maintenance, Plant shut downs

Our program impacts stakeholders with...

Commercial Successes

Operationally meaningful outcomes

Emissions Control

Technological preparedness with a focus on cost and flexibility.

Water Use Optimization

A heightened focus on sustainability requires improved management of withdrawals.

Performance Optimization

Improving total plant efficiency and optimizing in real time to flexible operations

Benefits to the environment

Combined Technologies Could Reduce Thermoelectric Water

Withdrawal by 603 BGY Consumption by 154 BGY

(1,653 MGD)

(423 MGD)

Based on a 50% market penetration and implementing 5 technologies

Balanced across challenges/solutions

Technical solution

 \sum

22 projects

\$17.5M invested

Total Crosscutting investment (\$M)

1.0 1.5 2.0 2.5

Total number of projects represented numerically

Driving towards near term impacts

Minimize water use and effluent generation

Enable flexible operation with reduced O&M

Facilitate hydrogen, biomass, and CCS

Increase plant efficiency

Redefining the possible

Application of Heat Transfer Enhancement (HTE) System for Improved Efficiency of Power Plant Condensers

- Demonstrated success from testing at full-scale across HVAC chillers, industrial heat exchangers, engine cooling, and a power plant condenser
- Test data revealed the reduced heat rate can save an ~\$190k in fuel costs and 12,800 less tons CO2 produced

Produced Water and Waste Heat-Aided Blowdown Water Treatment: Using Chemical and Energy Synergisms for Value Creation

- Introducing Produced Water to Blowdown Water, without any chemical addition, and resulted in 100% Ba removal at ratio BD:PW = 10:1
- An activated carbon filtration unit showed >90% total organic carbon removal

Water Recovery from Cooling Tower Plumes

- Designed and produced a hot wire sensor capable of measuring the liquid water content of a plume
- Set and ran simulations of a full-scale plume were in Solidworks Flow Simulator.
- Completed a redesign and build of the lab cooling tower, with a new heater solving the rust issue seen in the first iteration.

Flue-Gas Desulfurization Effluent Management Using Innovative Low-Energy Biosorption Treatment System to Remove Key Contaminants

- Down-selected to adsorption media that demonstrates
 90% selenium removal
- Completed testing protocol for demo scale set-up
- Procured and installed biosorption treatment system at Plant Bowen

A complete innovation ecosystem

Roles in the Ecosystem

- Objectives & aspirations
- Systems-level planning
- Policy & impact analysis
- Problem definition
- Product specifications
- Scale-up
- Transformational tech
- Workforce development
- Vision for the future

STAKEHOLDERS

Government and Regulatory

 \checkmark

Commercial value chain

External Innovators

Academia, Small businesses, Research Institutes, National Labs

Collaboration Opportunities

- Many ways to partner:
 - Directly with lab
 - Through funded competitions
- Engage with RFIs, Workshops
- Build on our efforts
 - USEA thought leadership
 - AWARE and IECM tools
 - Sandia Database
 - NETL RIC MVR baseline data
 - BEST testing infrastructure at EERC
 - NETL RIC Bias sorbent

Water Management Program Contacts

NATIONAL ENERGY TECHNOLOGY LABORATORY

https://www.netl.doe.gov/research/coal/crosscutting

Sam Thomas

Division Director

Advanced Energy and Hydrogen Systems Sotirios. Thomas@HQ.DOE.GOV

Patricia Rawls
Team Supervisor
Patricia.Rawls@NETL.DOE.GOV

